Hoe maakt de mens beslissingen?


Er zijn twee manieren om te omschrijven hoe mensen beslissingen maken: normatief en descriptief. Een normatief model omschrijft de keuzes die een rationeel persoon zou maken onder ideale omstandigheden. Echter wijken onze beslissingen vaak af van de keuzes die voorspeld zijn door normatieve modellen, voornamelijk door de gelimiteerde capaciteit voor informatieverwerking. Descriptieve modellen proberen te verklaren hoe mensen denken, door te begrijpen hoe en waarom mensen afwijken van normatieve rationaliteit.

Hoe kan problemen oplossen worden onderzocht?

Problemen oplossen kan onderzocht worden met ‘problem solving tasks’ waarbij de zetten van de persoon en de accuraatheid en benodigde tijd om het probleem op te lossen worden opgenomen. Daarnaast kunnen verbale rapporten worden verkregen (protocollen) van de oplosser, waarin beschrijven wordt welke stappen genomen zijn om het probleem op te lossen. Er kan naar problem solving gekeken worden met een denkbeeldige, mentale ‘problem space’. Deze ruimte wordt gecreëerd door de oplosser met zijn of haar begrip van het probleem, waaronder de relevante feiten en relaties die belangrijk worden geacht voor de taak. Het oplossen van het probleem vindt in deze ruimte plaats. Newell en Simon (1972) kwamen met een framewerk voor problem solving waarin doelen worden bereikt door de problem space. Binnen dit framewerk zijn verschillende problem spaces mentale representaties van verschillende taakomgevingen. Hierbij is het van belang hoe het probleem wordt gerepresenteerd (beginstaat en gewenste eindstaat of doel) en hoe de problem space wordt doorzocht. Omdat de problem space enkel een mentale representatie is, kan het op belangrijke vlakken verschillen van de taakomgeving. Een incomplete of inaccurate representatie is een veelvoorkomende bron van moeilijkheden voor problem solving.

Het doorzoeken van de problem space vraagt om overwegingen en evaluaties van de toegestane zetten. De gelimiteerde capaciteit van het werkgeheugen beperkt het aantal zetten die tegelijkertijd overwogen kunnen worden. Voor complexe problemen kan dus maar een klein gedeelte van de problem space in het werkgeheugen gehouden worden. Omdat maar een gelimiteerde hoeveelheid zetten onderzocht kunnen worden, heb je om een oplossing snel en efficiënt te vinden strategieën nodig die de zoektocht leiden richting ‘oplossingspaden’. Een persoon heeft dus een strategie nodig om een oplossing te vinden binnen de problem space, vooral wanneer ze zich op onbekend terrein bevinden. Verschillende strategieën: Trial en error bestaat uit het random selecteren van zetten tussen stadia om het doel te bereiken. Forward chaining begint bij de beginstaat. Alle mogelijke acties worden geëvalueerd en de beste wordt gekozen en uitgevoerd en feedback vertelt of de actie goed of slecht was. Dit proces wordt herhaalt totdat een oplossing is bereikt. Backward chaining begint bij het doel en probeert andersom een oplossingspad te vinden naar de beginstaat. Operator subgoaling betreft het kiezen van een zet zonder overweging of deze wel of niet geschikt is voor de huidige staat. Als het ongeschikt is, wordt een subdoel gevormd waarmee de oplosser probeert te bepalen hoe de huidige situatie moet worden veranderd zodat de gewenste zet meer geschikt wordt.

Deze strategieën maken gebruik van heuristics om te helpen met het kiezen van de juiste oplossing. Voorbeelden: hill climbing: het evalueren of het doel dichterbij zal zijn na het maken van elke mogelijke zet. Means-end analysis lijkt op hill climbing, alleen is hierbij de zet die nodig is om het doel te bereiken zichtbaar. Soms is het echter nodig om de afstand van het doel te vergroten in het oplossingspad, dit is erg moeilijk.

Analogy is een krachtige heuristic in problem solving. Hierbij wordt een vergelijking gemaakt tussen een nieuw probleem en een, overeenkomend, bekend probleem waarvoor de oplossing bekend is. Het effectief gebruiken van een analogy om een probleem op te lossen vereist dat de oplosser de structurele gelijkheid tussen het nieuwe en het bekende analoge probleem herkent en dan de analogy correct toepast. In het algemeen zijn mensen goed in het gebruiken van analogieën om problemen op te lossen, maar ze slagen er echter vaak niet in om bruikbare analogieën vanuit het geheugen op te halen. Een probleemoplosser zou getraind moeten worden in het gebruiken van vele scenario’s waarin een procedure gebruikt kan worden. Visuele hulpmiddelen kunnen worden ontworpen die de eigenschappen weergeven die belangrijk zijn voor het oplossen van een probleem of voor het leiden van de aandacht naar kritieke eigenschappen.

Hoe dragen logica en redenering aan probleemoplossingen?

Er kan ook gekeken worden naar problem solving met hoe mensen logica gebruiken of redeneren om een nieuwe mentale representatie te creëren. Er zijn drie typen van redeneren: deductief, inductief en abductief.

Deductie

Deductie is redeneren waarin een conclusie volgt uit generale assumpties over het probleem. Deduction hangt af van formele logicaregels. Formele logica heeft betrekking tot argumenten in de vorm van een lijst van assumpties en een conclusie. De uitspraken vormen een soort ‘argument’ wat een syllogisme wordt genoemd. Een syllogisme is valide als de conclusie logisch volgt vanuit de assumpties en invalide als dat niet het geval is. Syllogismen worden gebruikt om conditioneel en categorisch redeneren te onderzoeken.

Conditioneel redeneren is het trekken van een conclusie wanneer een bepaalde conditie van het systeem gegeven wordt: ‘Als het systeem uitgeschakeld is, dan was er een systeemfout. Het systeem was uitgeschakeld. Dus, er was een systeemfout’. Er zijn twee logicaregels om een conclusie te trekken bij syllogismen van deze vorm: affirmation/modus ponens (Als uit A B volgt en A is waar, dan moet B ook waar zijn) en denial/modus tollens (Als A volgt uit B en als B fout is, dan moet A ook fout zijn). Als we proberen vast te stellen hoe mensen deductief redeneren, presenteren we ze met syllogismen en laten ze beoordelen of de conclusie van de syllogisme valide is. Subjecten vinden de denial regel lastig, waarschijnlijk doordat de problem space inefficiënt wordt doorzocht.

Mensen redeneren beter als problemen in bekende contexten worden gepresenteerd; waarschijnlijk gebruiken mensen niet altijd logicaregels. Redeneren lijkt contextspecifiek te zijn. De ‘confirmation bias’ is een obstakel voor het verbeteren van rationeel gedrag in mensen. De confirmation bias is zo sterk, omdat mensen de ideeën van wat waar is willen behouden en de ideeën waarvan ze willen dat ze fout zijn willen verwerpen. Als mensen toch voor niet-ondersteunend bewijs zoeken, wordt dit lastiger naarmate de taak complexer wordt. Categorische syllogismen zijn anders dan conditionele syllogismen in dat ze de classificaties ‘sommige’, ‘alle’, ‘geen’ en ‘sommige niet’ bevatten. Hierbij kan de beoordeling van de validiteit van een conclusie ook beïnvloed worden door de context, een misinterpretatie van de assumpties en de confirmation bias. Volgens de atmosphere hypothesis zorgen de classificaties in de assumpties voor een ‘atmosfeer’ en neigen mensen de conclusies die consistent zijn met die atmosfeer te accepteren. Vele fouten bij categorische syllogismen kunnen ook een consequentie zijn van een ongeschikte mentale representatie van één of meer assumpties. De accuraatheid van syllogistisch redeneren hangt ook af van hoe de assumpties worden gepresenteerd, en voornamelijk van de volgorde van de zelfstandige naamwoorden in de assumpties. Het lijkt er op dat er niet geredeneerd wordt met formele logische regels, maar met cognitieve processen die vatbaar zijn voor bias en de limieten van het werkgeheugen.

Inductie

Inductie is redeneren waarbij een conclusie getrokken wordt uit bepaalde condities of feiten die relevant zijn aan een probleem. Hierbij hoeft de conclusie niet perse waar te zijn als de assumpties waar zijn (wat wel het geval is bij valide deducties). Bij inductief redeneren wordt een algemene conclusie getrokken uit specifieke condities zonder formele logicaregels. Ons begrip van hoe de wereld werkt groeit door gebruik te maken van inductie. Een concept is een abstractie van de regels en relaties van het gedrag van bepaalde objecten. Concepten minimaliseren de opslag van informatie en geven analogieën. Inductie vindt plaats door het activeren van conceptuele categorieën en regels die van belang zijn bij deze categorieën. Geactiveerde concepten worden geformuleerd naar een mentaal model (vergelijkbaar met de problem space). Inductie wordt gelimiteerd door de informatie die iemand vast kan houden in de problem space en het werkgeheugen. Een bepaalde probleem oplossende context zal een gelimiteerde aantal categorieën van conceptuele kennis activeren. Hierdoor kan het zijn dat niet alle informatie die nodig is om een valide inductie te maken beschikbaar is in het mentale model. Als verkeerde categorieën worden geactiveerd, kunnen alle getrokken conclusies binnen de context niet accuraat zijn. Als belangrijke informatie wordt weggelaten uit het mentale model, kan inductief redeneren niet gepasseerd worden op deze informatie en kan de conclusie ook niet accuraat zijn.

Mentale modellen kunnen gebruikt worden om mogelijke uitkomsten van acties te simuleren. Net zoals bij inductief redeneren, kunnen deze simulaties resulteren in een accurate conclusie, maar niks is zeker. De accuraatheid van een conclusie hangt af van de accuraatheid van het mentale model. Een verkeerd mentaal model kan tot incorrecte gevolgtrekkingen leiden. ‘Typicality effects’ betreffen het beter classificeren als een object typisch is voor de categorie dan als deze atypisch is. Conjunctie fouten komen voort uit de representativiteit heuristiek, waarbij objecten toegeschreven worden aan categorieën gebaseerd op hoe typisch ze tot een bepaalde categorie horen. Het prototype is de ideale of meest typische lid van een categorie.

Abduction

Abduction is redenering waarbij nieuwe hypotheses worden gegenereerd om een patroon van observaties het beste te verklaren. Het betreft het verklaren van datapatronen, het onthalen van meerdere hypotheses en het bepalen van de beste uitleg. Bij abductief redeneren evalueren mensen elke hypothese relatief tot andere hypothesen, met als doel om de beste uitleg te vinden.

Hoe maken we beslissingen?

Er zijn twee theorieën over hoe mensen beslissingen maken: Normatieve theorieën stellen wat mensen moeten doen om de best mogelijke beslissingen te maken. Maar mensen maken vaak niet de beste beslissingen, dus descriptieve theorieën leggen uit hoe mensen werkelijk beslissingen maken.

Normative theory

Normative theory houdt zich bezig met hoe we zouden moeten kiezen tussen mogelijke acties onder ideale condities. De beslisser moet de actie kiezen die de grootste ‘utility’ (waarde) met zich meebrengt. Hoe mensen utility meenemen in hun besluitvormingsproces is onderzocht met gokken. De expected-utility theory geeft aan welke beslissing het beste is door het berekenen van welke beslissing de grootste waarde heeft. Expected-utility theory is erg invloedrijk geweest, omdat rationele keuzes gebaseerd moeten zijn op getallen. Dit betekent dat enkel een paar fundamentele regels van gedrag (axioms) gebruikt kunnen worden om erg complex besluitvormingsgedrag te deduceren. Maar zo simpel is het niet.

Descriptive theory

Mensen overtreden consistent de axioms van expected-utility theory en laten eigenlijk irrationeel keuzegedrag zien.

Transitiviteit en Framing

De axiom van transitiviteit houdt in dat als je A kiest boven B, en B over C, dan zou je A moeten kiezen over C. Echter overtredingen van transitiviteit komen voor omdat kleine verschillen tussen alternatieven in sommige situaties worden genegeerd en in andere situaties niet. Overtredingen komen dus voort uit vergelijkingen tussen verschillende kenmerken van alternatieven. Framing houdt in dat gekozen gedrag kan veranderen wanneer de context van keuzes verandert, zelfs wanneer de context de verwachte waardes van de keuzes niet veranderd. Een persoon wordt sterk beïnvloed door de manier waarop belangrijke informatie wordt gepresenteerd, voornamelijk omdat dit beïnvloed hoeveel aandacht mensen schenken aan verschillende attributen van een keuze. De stabiliteit van voor keur houdt is dat als A over B wordt gekozen in een situatie, dit in alle andere situaties ook zo zou moeten zijn. De context waarin iemands keuze is ‘geframed’ heeft een effect op de voorkeuren van een persoon, en hij of zij zal aandacht schenken aan andere kenmerken van de keuze in verschillende contexten.

Bounded rationality

Een beslisser baseert zijn of haar beslissingen op een gesimplificeerd model van de wereld. Er is sprake van een gelimiteerde hoeveelheid informatie die verwerkt kan worden op één moment. Satisficing is het overwegen van enkel de eigenschappen die voor jou het belangrijkst zijn en op basis hiervan een beslissing maken. Heuristieken produceren niet altijd een correcte of optimale beslissing, maar ze helpen mensen met het overkomen van hun cognitieve en aandacht limieten. Satisficing vindt daarom ook plaats door het gebruik van heuristieken. Voorbeelden:

  • Bij elimination by aspects wordt het aantal te evalueren eigenschappen verminderd door alleen te focussen op de voor jou belangrijkste eigenschappen. Hierbij wordt begonnen met de meest belangrijke en vervolgens worden alleen de keuzes opengelaten die nog aantrekkelijk zijn op basis van deze eigenschap. Men heeft de neiging om beslissingen enkel te baseren op opvallende dimensies, vooral onder stress.

  • Availability is het gemak waarmee gebeurtenissen opgehaald kunnen worden vanuit het geheugen. Gemakkelijk onthouden gebeurtenissen worden als waarschijnlijker gezien.

  • Bij representativeness wordt de mate van overeenkomst tussen verschillende gebeurtenissen gebruikt om vast te stellen hoe waarschijnlijk het is dat een gebeurtenis zal plaatsvinden. Meer representatieve uitkomsten zullen als waarschijnlijker worden gezien.

Mensen zijn erg slecht in het maken van accurate kansschattingen. ‘Gambler’s fallacy’ ontstaat wanneer onafhankelijke gebeurtenissen niet meer als onafhankelijk worden gezien. Wanneer heuristieken worden gebruikt in het maken van schattingen, zullen deze schattingen systematische fouten bevatten. Beslissers hebben moeite met het samenvoegen van de waarschijnlijkheden van verschillende bronnen, waardoor deze schattingen zo vaak mogelijk geautomatiseerd zouden moeten worden. Wanneer een basis waarschijnlijkheid bekend is, zou deze informatie geïntegreerd moeten worden met huidige waarschijnlijkheden. Mensen denken vaak echter niet aan deze basis waarde. De neiging om conservatief te zijn in het aanpassen van waarschijnlijkheidsschattingen heet ‘anchoring’. Als complexe redeneertaken worden uitgevoerd, wordt vaak gebruik gemaakt van heuristieken. die de ‘mental workload’ verminderen. Dit zorgt vaak voor accurate oordelen, maar soms leidt dit ook tot fouten.

Wat draagt bij aan de verbetering van beslissingen?

Er zijn drie manieren om de kwaliteit van beslissingen te verbeteren: het ontwerpen van educatie en training programma’s; het verbeteren van het ontwerp van taakomgevingen; en het ontwikkelen van ‘developing decision aids’. Trainingen gefocust op het verbeteren van redeneren en beslissingen in het algemeen zijn niet effectief. Een training zou zich moeten richten op het verbeteren van prestatie in specifieke taakomgevingen, omdat redeneren meestal gebaseerd is op contextspecifieke kennis. Trainen op kansschatting helpt echter wel!

Beslissinghulpmiddelen

Besluitvormingsprestatie kan verbeterd worden met het geven van hulpmiddelen aan beslissers om de geheugen en informatieverwerking eisen van de taak te verminderen. Meestal is de rol van een besluithulpmiddel om de beslisser te dwingen om te conformeren aan de keuzes van de normatieve theorieën. Een benadering voor complexe besluitvorming is decision analysis, waarbij complexe problemen gestructureerd worden en opgedeeld worden in simpelere componenten. De verwachte utility wordt dan uitgerekend voor elke mogelijke beslissing en gebruikt om de beste oplossing aan te raden. Er zijn veel computergebaseerde besluitondersteuning systemen. Deze systemen hebben drie belangrijke componenten: een ‘user interface’, een ‘control structure’ en een ‘fact base’. Cased-based supportsystemen slaan geschikte analogieën op en halen deze weer op als dat nodig is. Ze helpen met besluitvorming, omdat mensen goed analogieën kunnen gebruiken bij het redeneren, maar het lastig vinden om ze op te halen uit het geheugen. Een recommendation system geeft informatie over de relatieve voordelen van alternatieve acties of producten.

Gerelateerde pagina's

Relaties en meer lezen

  Chapters 

Teksten & Informatie

JoHo: paginawijzer

JoHo 'chapter 'pagina

 

Wat vind je op een JoHo 'chapter' pagina?

  •   JoHo chapters zijn tekstblokken en hoofdstukken rond een specifieke vraag of een deelonderwerp

Crossroad: volgen

  • Via een beperkt aantal geselecteerde webpagina's kan je verder reizen op de JoHo website

Crossroad: kiezen

  • Via alle aan het chapter verbonden webpagina's kan je verder lezen in een volgend hoofdstuk of tekstonderdeel.

Footprints: bewaren

  • Je kunt deze pagina bewaren in je persoonlijke lijsten zoals: je eigen paginabundel, je to-do-list, je checklist of bijvoorbeeld je meeneem(pack)lijst. Je vindt jouw persoonlijke  lijsten onderaan vrijwel elke webpagina of op je userpage
  • Dit is een service voor JoHo donateurs en abonnees.

Aanmelden

  • Hier kun je naar de pagina om je aan te sluiten bij JoHo, JoHo te steunen en zelf en volledig gebruik te kunnen maken van alle teksten en tools.

Aanmelding: checken

  • Hier vind je wat jouw status is als JoHo donateur of abonnee

Prints: maken

  • Dit is een service voor wie bij JoHo is aangesloten. Wil je een tekst overzichtelijk printen, gebruik dan deze knop.
JoHo: footprint achterlaten
 
   

Account - Bereikbaarheid - Contact - Dienstenwijzer - Gegevens - Vacatures - Zoeken